
IMPORTANCE OF AGGREGATION AND SMALL ICE CRYSTALS IN CIRRUS CLOUDS,

BASED ON OBSERVATIONS AND AN ICE PARTICLE GROWTH MODEL

David L. Mitchell, Steven K. Chai, Yayi Dong, W. Patrick Arnott and John Hallett

Desert Research Institute, P.O. Box 60220, University of Nevada, Reno, NV 89506

Andrew J. Heymsfield

National Center for Atmospheric Research, Boulder, CO 80303

The i November 1986 FIRE I case study was used to test an ice particle growth model

which predicts bimodal size spectra in cirrus clouds. The model was developed from an

analytically based model which predicts the height evolution of monomodal ice particle size

spectra from the measured ice water content (IWC). Size spectra from the monomodal model are

represented by a gamma distribution,

N(D) - NoDVexp(-_D) (1)

where D - ice particle maximum dimension. The slope parameter, _, and the parameter N O are

predicted from the IWC through the growth processes of vapor diffusion and aggregation. The

model formulation is analytical, is computationally efficient, and well suited for

incorporation into larger models. The monomodal model has been validated against two other

cirrus cloud case studies as described in Mitchell (1993; 1991). From the monomodal size

spectra, the size distributions which determine concentrations of ice particles < about 150

_m are predicted.

Ice particle size spectra measured by the DRI ice particle replicator on 21 Nov. 1991

during FIRE II indicate ice particles in cirrus with 10 #m < D < 150 _m conform to an

exponential size distribution with approximately constant slope. Based on 21 size

distributions, _ _ 226 ± 35 cm -I, Size spectra from the 2D-C probe for i Nov. 1986 (during

FIRE I) exhibited a similar constant slope value (about 250 cm -l) for 50 _m < D < 150 _m.

Assuming this result is general for most cirrus, this enables the component of the size

distribution containing particles < 150 _m to be predicted from the size distribution

containing larger particles, which is predicted by the growth processes of vapor diffusion

and aggregation.

The height evolution of ice particle size spectra was measured during a Lagrangian

spiral descent through a relatively uniform cirrus deck during FIRE I on i Nov. 1986. Cloud

depth ranged from 9 km to about 5.1 km. Model predicted and measured size distributions were

plotted and compared favorably, as shown in Fig. la-lb. Measured size distributions are

indicated by the solid lines, and size spectra predicted by the ice particle growth model are

indicated bv the long dashed lines. The short-dashed lines are predicted for vapor

deposition growth only (no aggregation). These spectra would occur if ice crystals did not

combine to form aggregates, and remained as single ice crystals. The model assumes all ice

particles are single ice crystals at cloud top (no aggregation), and thus there is no

difference between the two predicted spectra at cloud top. The lower the level in the cloud,

the more time there is for aggregation to occur as ice falls from cloud top, and the size

spectra broaden to include the larger aggregates.

Since no theoretical method for predicting w is known, w was given a constant value of

5. This parameter controls the degree ol bimodality (i.e. the magnitude of the secondary

maximum) in the size distribution. The parameter w varied between 3 at cloud base to 16 at

cloud top. Since u is underestimated in the model in the upper cloud, the observed

bimodallty is underestimated by the model predicted spectra above 7.4 km. Overall, however,

the model predicted size spectra agree fairly well with the observed size spectra, especially

at the smaller sizes. Since crystals < 150 pm may contribute significantly to size

distribution area, the model appears well suited for predicting cirrus cloud radiative

properties.

The ice water content was fairly constant throughout most of the cloud, indicating vapor

deposition or sublimation did little to change ice particle sizes. This was confirmed by the

model. The updraft calculated from the IWC was _ I0 cm s -I, and should not significantly
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affect ice particle size based on model results. Advection should not affect ice particle

sizes since the sampling was conducted in a Lagrangian spiral descent. This leaves

aggregation as the process most likely to account for the observed increase in ice particle

size. These conditions made it possible to determine the mean cloud aggregation efficiency

from the model and the field data. The mean a_gregation efficiency was about 0.5±0.i

(depending slightly on what ice crystal mass-dimension relationship is used), which is

typical of values calculated for frontal clouds. Ice particles descending over 3 km

increased in mean size due to aggregation by about 40_.

Clear evidence of highly aggregated precipitation in cirrus was observed on replicator

images of ice particles obtained during FIRE II on 5 Dec. 1991. Most particles > IOO #m were

aggregates comprised of side planes and columns, as shown in Fig. 2. Side planes were always

abundant in aggregates. Recent observations of single columns, bullets, and bullet rosettes

in cirrus clouds by Matsuo et al. (1993) show no evidence of aggregation for these crystal

types. Thus it is postulated that side planes are required for significant aggregation in

cirrus clouds. They appear to act as the "glue" which bind other crystals like columns to

an aggregate. Both side planes and bullet rosettes are spatial crystal habits believed to

form from freezing haze or cloud droplets. Side planes can grow effectively at just above

ice saturation, while comparable growth rates for bullet rosettes require higher

supersaturations (Furukawa 1982).

Aggregation reduced the optical depth of the 1 Nov. 1986 cirrus cloud by about 2Or,

relative to the optical depth predicted for growth by vapor diffusion only. This is

illustrated in Fig. 3, where the solid line gives the extinction coefficient for size spectra

predicted by vapor diffusion and aggregation, while the dashed line is for diffusion growth

only. Aggregation reduces the total surface area of a size distribution by combining many

small crystals into fewer ice particles, thus reducing the extinction coefficient.

Consequently, the single scatter albedo, w_, was significantly reduced in the near IR by

aggregation growth. This is illustrated in Fig. 4, where _o Is predicted with (solid llne)

and without (dashed line) aggregation at a wavelength of 2.2 #m. Calculations of the

extinction and absorption coefficients were based on anomalous diffraction theory and the

types of ice crystal habits observed by the 2D-C (spatial habits and columns), using the

method described in Mitchell and Arnott (1993). The constant slope of the small particle end

of the size distribution was used to extrapolate to zero size for these calculations.

Aggregation should also affect the phase function. As light passes through an ice

crystal aggregate, multiple pairs of refraction events are likely and more side and back

scattering should occur. Thus, the asymmetry factor might be lower in cirrus containing side

planes if they are precursors for aggregation.
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Fig. la. Comparison of size spectra from i

Nov. case study (solid line) with model

predicted spectra (long dashed line) and with

spectra predicted without aggregation (short

dashed line).
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Fig. lb. Same as Fig. i but at 5.6 km.
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Fig. 2. A side plane/column aggregate from 5

Dec. 1991. Temperature was -40°C.
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Fig. 3. Profile of the extinction coefficient

for the I Nov. case study, predicted with

(solid line) and without (dashed line)

aggregation.
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Fig. 4. Same as Fig. 3 except for the single

scatter albedo.

Fig. 5. Profile of the single scatter albedo

calculated for all ice particles sizes (solid

line), and for sizes > 150 #m (dashed llne).

179



In light of all this, a few comments about anvil cirrus in the equatorial Pacific are

in order. The vast majority of ice crystals measured by the DRI replicator during TOGA COARE

were side planes. Sizes were small, concentrations were high and they generally appeared

aggregated (although the slow speed of the replicator film may have resulted in "piling up"

of ice crystals). Similar observations were reported in Takahashi and Kuhara (1993) for

tropical cirrus in the western Pacific. Spatial or polycrystalllne ice crystals form from

frozen cloud or haze droplets, where bullet rosettes are favored at higher supersaturatlons

and side planes dominate at lower supersaturations (Furukawa 1982). If the lower

stratosphere contains higher CCN concentrations, such as HzSO 4 aerosol, than the upper

troposphere, then anvil cirrus subjected to stratospheric mixing may receive higher CCN

fluxes than other types of cirrus. Homogeneous freezing nucleation rates (Sassen and Dodd

1988) may thus be relatively high, decreasing supersaturations and promoting side planes.

The high area to mass ratio for side planes (which increases single scatter albedo (Mitchell

and Arnott 1993)), a relatively low asymmetry parameter, and the relatively small sizes and

high concentrations of side planes may conspire to produce cirrus which are more reflective

in the tropics than in other regions where stratospheric air is not involved. This reasoning

supports the theory of Ramanathan and Collins (1992), which emphasizes the high albedo

observed from tropical cirrus. It may also help explain the FIRE II observations of 5 Dec,

1991, where cirrus evidently formed in the Mt. Pinatubo aerosol plume (Sassen 1992). The

anomalously high CCN concentrations may have depressed supersaturations, explaining the

dominance of side planes on that day. On the other hand, aggregation will act to diminish

cirrus albedo. As the IWC increases and cirrus thicken, aggregation growth (which depends

on IWC) accellerates. All of these factors should be considered when evaluating the albedo

and greenhouse effect of tropical cirrus clouds.

Predicted ice particles larger than about 150 _m accounted for 89% of the optical depth

in the I Nov. 1986 case study. The predicted influence of ice crystals < 150 #m on the

single scatter albedo was weaker than the effect of aggregation, as shown in Fig. 5. This

case study suggests that the discrepancy between reflectances predicted by radiative transfer

models and measured reflectances is not due to extremely high concentrations of undetected

ice crystals < 50 pm in length.
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